This is the 1st of your 3 free articles.

Become a member for unlimited website access and more.

FREE TRIAL Available!

Learn More

Already a member? Sign in to continue reading

Study: Torpor in hummingbirds variable and flexible

This composite of infrared images of a Blue-throated Mountain-gem shows it (L-R): in normal sleep state, transitioning to torpor, then in torpor. Images courtesy of Anusha Shankar, Isabelle Cisneros, Sarah Thompson, and Don Powers.

If you’re a fan of hummingbirds, then you probably know that at night, they lower their body temperature and metabolism drastically by dropping into an energy-saving state of inactivity called torpor. A study published recently finds that the birds have more than one level of torpor — shallow and deep — plus a transition stage between levels of torpor and the normal sleep state.

Their findings have been published in the Journal of Experimental Biology.

“There have been a few hints that this ability to fine-tune thermoregulation was possible,” said lead author Anusha Shankar, currently a Rose Postdoctoral Fellow at the Cornell Lab of Ornithology. “But the studies were done under laboratory conditions, not the conditions a bird would encounter in the wild. It was really exciting to see that hummingbird torpor could be variable and flexible.”

Three species studied

Shankar and colleagues from Stony Brook University, the Swiss Federal Research Institute, and George Fox University used infrared thermal imaging to track the body temperatures of three hummingbird species in Arizona: Blue-throated Mountain-gem, Rivoli’s Hummingbird, and Black-chinned Hummingbird. They measured the temperature emitted from the skin around the eyes of the birds and found that differences in heat generation at various stages are stark.


The normal daytime body temperature of a hummingbird is more than 100 degrees Fahrenheit, even in cold weather. During shallow torpor, their body temperature drops by about 20 degrees Fahrenheit. In deep torpor, the bird maintains a body temperature 50 degrees Fahrenheit below its normal daytime temperature. If human body temperature were to drop a mere 3 degrees from the standard 98.6 degrees Fahrenheit, we’d be in a state of hypothermia and, unlike hummingbirds, would need outside help to get warm again. Size also matters.

Here’s what a Blue-throated Mountain-gem looks like in daylight. Photo by Catherine Jacobs

“In this study we found that the smallest bird used deep torpor every night,” said Shankar. “The bigger birds sometimes use deep torpor and sometimes shallow torpor, and sometimes no torpor at all.”

She explains that torpor studies typically are performed under constant temperatures and light cycles in a lab.

“We studied birds that we captured in the evening, measured with the thermal cameras under natural temperature and light conditions overnight (by placing them in chambers outside) and then released in the morning,” Shankar said. “Our chambers had three solid walls, and the front had a plastic sheet. When the bird settled down after dark, we’d carefully lift the plastic sheet so that the thermal camera could see through to the bird without any obstructions (the plastic sheet slightly altered temperature readings). So technically, the birds could fly out of the chamber and escape at that point if they were alert (and a few sneaky ones did in fact escape!).”


Torpor not the same as sleep

Shallow torpor may have developed to balance energy-saving with the costs of deep torpor. In deep torpor, a hummingbird is probably more vulnerable to disease because its immune system shuts down, plus it is vulnerable to predation and sleep deprivation. This ability to use torpor at varying depths indicates that at least some birds are capable of fine-tuning how cold they get in torpor, and how they manage saving energy with the potential costs of dropping way down into deep torpor.

Torpor is not the same as sleep. Sleep uses much more energy and serves many restorative functions. Daily torpor also differs from hibernation. Hibernating animals enter a low-energy state for weeks or months at time while hummingbirds can enter torpor every night.

Many questions remain about what is taking place in the brain during torpor, how levels of body fat may trigger torpor, and how the hummingbirds can generate the heat to warm up again — a process that can take up to 30 minutes.


“At least 42 bird species use torpor,” said Shankar, “But only hummingbirds, nightjars, and one species of mousebird go into deep torpor. Studying the range of torpor could help us understand the evolution of thermoregulation in birds.”

Thanks to the Cornell Lab of Ornithology for providing this news.

How birds stay warm when the weather turns cold